Bilateral Synchronous Mucoepidermoid Carcinoma of Parotid Gland

Meltem Akpinar¹, Ozlem Unsal¹, Mahmut Cankaya¹, Fatih Tetik¹, Berna Uslu Coskun¹

ABSTRACT: Bilateral synchronous mucoepidermoid carcinoma of parotid gland

Objective: Although mucoepidermoid carcinoma is the most common malignant tumor of parotid, it is seen extremely rare in both of parotid glands synchronously. In this case report, we presented a case of 53-year-old man with bilateral synchronous mucoepidermoid carcinoma of parotid gland treated with surgery.

Case: A painless mass in left parotid was the major complaint of the patient. The mass located in right parotid was found incidentally by imaging. Based on cytopathology, left total parotidectomy preserving facial nerve with ipsilateral neck dissection and 5 weeks later right superficial parotidectomy was performed. In 3-year follow-up, no recurrences in parotid regions and neck was detected.

Conclusion: Detailed examination for parotid masses is suggested to identify possible occult synchronous tumors in contralateral side or in other salivary glands. A close follow-up is also recommended for the risk of future metachronous tumor occurrence.

Keywords: Mucoepidermoid carcinoma, parotid gland, bilateral, synchronous, salivary gland

INTRODUCTION

Mucoepidermoid carcinoma is the most common malignant tumor of the parotid gland (1,2). It usually occurs as unilateral lesion and accounts for 30% of malignant salivary gland tumors (2). Bilateral mucoepidermoid carcinoma of parotid gland is rarely encountered and may occur synchronously or metachronously (1,3-6) This paper reports a patient with synchronous bilateral mucoepidermoid carcinoma of parotid gland.

CASE

A 53-year-old male patient was admitted to our clinic with a complaint of left preauricular painless swelling for one month. Physical examination revealed a 2x3 cm of firm, semi-mobile and painless...
Bilateral synchronous mucoepidermoid carcinoma of parotid gland

A lesion in left preauricular localization. In neck ultrasonography (US), a 29x13x31 mm sized, anechoic, thick walled cystic lesion with peripheral vascularisation and echogenicity extending to the cyst lumen in left parotid gland was reported. Additionally, in right parotid gland, a thin walled, anechoic 10x7 mm, cystic lesion with indistinguishable boundaries was reported. Round shaped, 12x8 mm sized, hypoechogenic lymph nodes with indistinguishable central echogenic hilum were also detected sonographically on the left side of the neck at level 2 region. Magnetic resonance imaging (MRI) with contrast revealed a lobulated, irregular mass (32x22 mm) located in anteroinferior segment of superficial lobe of left parotid gland with areas of wide central necrosis, septation and peripheral wall enhancement and a pure cystic lesion lateral to retromandibular vein in right parotid gland (Figures-1,2). The morphology of upper juguler lymph nodes was reported as benign in MRI. Fine needle aspiration biopsy (FNAB) of left parotid gland mass was reported as mucoepidermoid carcinoma. The FNAB of right parotid gland mass was reported as cytology with lymphocytes, epithelial and myoepithelial cells.

The patient was scheduled for staged left and right parotidectomy operation. On the first stage, left total parotidectomy was performed preserving the facial nerve. The intraoperative frozen section confirmed mucoepidermoid carcinoma and left neck dissection (level 1, 2, 3, 4) was also performed. The facial nerve functions were normal after the operation. Five weeks later, the right parotid mass was excised through superficial parotidectomy. Intraoperative frozen section of the lesion revealed low grade mucoepidermoid carcinoma. Owing to the grade of the tumor, neck dissection didn’t

Figure-1: MRI image of left parotid mass
Figure-2: MRI image of right parotid mass
Figure-3: Histopatologic slide of intermediate grade mucoepidermoid carcinoma of left parotid gland (magnification x 200, Hematoxylin -Eosin)
performed. Post-operative right facial nerve functions were intact as well.

The final histopathology of left and right surgical specimens confirmed the frozen section and was reported as intermediate and low grade mucoepidermoid carcinomas, respectively (Figures-3,4). The pathology of left sided neck dissection specimen revealed non-metastatic lymphadenopathies. Further therapy was not considered due to tumor free surgical margins and negative cervical lymph nodes. The patient is on the third year of follow-up and is uneventful without evidence of recurrence and metastasis.

DISCUSSION

Bilateral malignant salivary tumours involving parotid glands may be synchronous or metachronous (7). Synchronous tumors are defined as separate but simultaneous neoplasms and usually have tendency of same histologic type (6). Whartin’s tumor, pleomorphic adenoma, acinic cell carcinoma, adenocarcinoma and myoepithelial carcinoma are among the previously reported bilateral synchronous tumors in parotid gland (6,8). The most common histopathologic type is acinic cell carcinoma among six cases reported previously in literature (9-15). Two cases of adenocarcinoma were reported (16,17). Bilateral synchronous mucoepidermoid carcinoma of parotid gland is extremely rare. Only two cases were reported previously (1,6). Metachronous bilateral mucoepidermoid carcinoma of parotid gland is also rare and only two cases were reported previously (3,4).

US provides bilateral evaluation of parotid gland and contributes to the diagnosis of bilateral parotid masses. US and FNAB are contributory in the diagnostic work-up of parotid neoplasms (18). The malignancy detection rate of ultrasound guided FNAB for parotid tumors is remarkable whereas its diagnostic accuracy in tumor typing and grading is low (19,20). Intraoperative frozen section was reported to be superior in tumor typing and grading compared to FNAB (19,20). In present case, FNAB clarified the left parotid gland mass as mucoepidermoid carcinoma but was inconclusive for the diagnosis of right parotid gland mass.

The histologic grade is considered as the most important factor in determining the management and in predicting the outcome in parotid gland mucoepidermoid carcinoma (21,22). Mucoepidermoid carcinomas are classified histopathologically as low, intermediate and high grade. The low grade mucoepidermoid carcinomas usually mimic benign tumors but still have the potential of local invasion and distant metastasis. The cystic component less than 20%, neural invasion, necrosis, anaplasia and intense mitotic activity are the histopathologic features that reveal high grade tumor. The locoregional invasion and metastasis rate are increased in high grade mucoepidermoid carcinomas. In a previous study, five-year disease specific survival rates for low-grade, intermediate-grade, and high-grade mucoepidermoid carcinoma among 2400 patients were reported as 98.8%, 97.4%, and 67.0%, respectively (21).

The grade of tumor may not be clearly defined through intraoperative frozen section in all cases. In this case, intraoperative frozen section confirmed mucoepidermoid carcinoma in left parotid gland but was inconclusive for tumor grade. On the other hand, intraoperative frozen section was conclusive for typing and grading of right parotid mass.

The treatment for low grade mucoepidermoid carcinoma of superficial part of parotid gland is
Bilateral synchronous mucoepidermoid carcinoma of parotid gland

superficial parotidectomy (23). The suggested management for intermediate grade mucoepidermoid carcinoma is excision of lesion with negative surgical margins through total parotidectomy with preservation of facial nerve. Selective neck dissection in N0 patients is recommended both in intermediate and high grade mucoepidermoid carcinoma (23). In this case, the management of intermediate grade mucoepidermoid carcinoma in left parotid was accomplished through total parotidectomy along with lateral neck dissection. The right parotid mucoepidermoid carcinoma with low grade was managed with superficial parotidectomy.

CONCLUSION

The diagnosis of malignant tumors of parotid gland warrants a detailed examination. US is the first choice in imaging modalities. MRI and/or computerized tomography are suggested to determine the expanse of malignant tumors or presence of metastatic lymph nodes. For identifying the possible occult synchronous tumors in contralateral parotid gland and other salivary glands, the radiographic images should be analyzed carefully. FNAB and intraoperative frozen section contribute to tumor typing and grading for the establishment of surgical plan. Surgical removal is recommended for the management of synchronous bilateral parotid mucoepidermoid carcinoma like all benign and malignant tumors of salivary glands. Close clinical follow-up is also suggested for the risk of future metachronous tumor occurrence or recurrences.

Acknowledgement: We are deeply grateful to Dr. Tulay Basak (Pathologist) for the histopathological examination of the preparates and providing the microscopic images.

REFERENCES
